36 research outputs found

    Optimal Control for Aperiodic Dual-Rate Systems With Time-Varying Delays

    Full text link
    [EN] In this work, we consider a dual-rate scenario with slow input and fast output. Our objective is the maximization of the decay rate of the system through the suitable choice of the n-input signals between two measures (periodic sampling) and their times of application. The optimization algorithm is extended for time-varying delays in order to make possible its implementation in networked control systems. We provide experimental results in an air levitation system to verify the validity of the algorithm in a real plant.This work was supported in part by the Spanish Ministry of Economy and Competitiveness (MINECO) under the Projects DPI2012-31303 and DPI2014-55932-C2-2-R.Aranda-Escolástico, E.; Salt Llobregat, JJ.; Guinaldo, M.; Chacon, J.; Dormido, S. (2018). Optimal Control for Aperiodic Dual-Rate Systems With Time-Varying Delays. Sensors. 18(5):1-19. https://doi.org/10.3390/s18051491S119185Mansano, R., Godoy, E., & Porto, A. (2014). The Benefits of Soft Sensor and Multi-Rate Control for the Implementation of Wireless Networked Control Systems. Sensors, 14(12), 24441-24461. doi:10.3390/s141224441Shao, Q. M., & Cinar, A. (2015). System identification and distributed control for multi-rate sampled systems. Journal of Process Control, 34, 1-12. doi:10.1016/j.jprocont.2015.06.010Albertos, P., & Salt, J. (2011). Non-uniform sampled-data control of MIMO systems. Annual Reviews in Control, 35(1), 65-76. doi:10.1016/j.arcontrol.2011.03.004Cuenca, A., & Salt, J. (2012). RST controller design for a non-uniform multi-rate control system. Journal of Process Control, 22(10), 1865-1877. doi:10.1016/j.jprocont.2012.09.010Cuenca, Á., Ojha, U., Salt, J., & Chow, M.-Y. (2015). A non-uniform multi-rate control strategy for a Markov chain-driven Networked Control System. Information Sciences, 321, 31-47. doi:10.1016/j.ins.2015.05.035Kalman, R. E., & Bertram, J. E. (1959). General synthesis procedure for computer control of single-loop and multiloop linear systems (an optimal sampling system). Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry, 77(6), 602-609. doi:10.1109/tai.1959.6371508Khargonekar, P., Poolla, K., & Tannenbaum, A. (1985). Robust control of linear time-invariant plants using periodic compensation. IEEE Transactions on Automatic Control, 30(11), 1088-1096. doi:10.1109/tac.1985.1103841Bamieh, B., Pearson, J. B., Francis, B. A., & Tannenbaum, A. (1991). A lifting technique for linear periodic systems with applications to sampled-data control. Systems & Control Letters, 17(2), 79-88. doi:10.1016/0167-6911(91)90033-bLi, D., Shah, S. L., Chen, T., & Qi, K. Z. (2001). Application of dual-rate modeling to CCR octane quality inferential control. IFAC Proceedings Volumes, 34(25), 353-357. doi:10.1016/s1474-6670(17)33849-1Salt, J., & Albertos, P. (2005). Model-based multirate controllers design. IEEE Transactions on Control Systems Technology, 13(6), 988-997. doi:10.1109/tcst.2005.857410Nemani, M., Tsao, T.-C., & Hutchinson, S. (1994). Multi-Rate Analysis and Design of Visual Feedback Digital Servo-Control System. Journal of Dynamic Systems, Measurement, and Control, 116(1), 45-55. doi:10.1115/1.2900680Sim, T. P., Lim, K. B., & Hong, G. S. (2002). Multirate predictor control scheme for visual servo control. IEE Proceedings - Control Theory and Applications, 149(2), 117-124. doi:10.1049/ip-cta:20020238Xinghui Huang, Nagamune, R., & Horowitz, R. (2006). A comparison of multirate robust track-following control synthesis techniques for dual-stage and multisensing servo systems in hard disk drives. IEEE Transactions on Magnetics, 42(7), 1896-1904. doi:10.1109/tmag.2006.875353Wu, Y., Liu, Y., & Zhang, W. (2013). A Discrete-Time Chattering Free Sliding Mode Control with Multirate Sampling Method for Flight Simulator. Mathematical Problems in Engineering, 2013, 1-8. doi:10.1155/2013/865493Salt, J., & Tomizuka, M. (2014). Hard disk drive control by model based dual-rate controller. Computation saving by interlacing. Mechatronics, 24(6), 691-700. doi:10.1016/j.mechatronics.2013.12.003Salt, J., Casanova, V., Cuenca, A., & Pizá, R. (2013). Multirate control with incomplete information over Profibus-DP network. International Journal of Systems Science, 45(7), 1589-1605. doi:10.1080/00207721.2013.844286Liu, F., Gao, H., Qiu, J., Yin, S., Fan, J., & Chai, T. (2014). Networked Multirate Output Feedback Control for Setpoints Compensation and Its Application to Rougher Flotation Process. IEEE Transactions on Industrial Electronics, 61(1), 460-468. doi:10.1109/tie.2013.2240640Khargonekar, P. P., & Sivashankar, N. (1991). 2 optimal control for sampled-data systems. Systems & Control Letters, 17(6), 425-436. doi:10.1016/0167-6911(91)90082-pTornero, J., Albertos, P., & Salt, J. (2001). Periodic Optimal Control of Multirate Sampled Data Systems. IFAC Proceedings Volumes, 34(12), 195-200. doi:10.1016/s1474-6670(17)34084-3Kim, C. H., Park, H. J., Lee, J., Lee, H. W., & Lee, K. D. (2015). Multi-rate optimal controller design for electromagnetic suspension systems via linear matrix inequality optimization. Journal of Applied Physics, 117(17), 17B506. doi:10.1063/1.4906588LEE, J. H., GELORMINO, M. S., & MORARIH, M. (1992). Model predictive control of multi-rate sampled-data systems: a state-space approach. International Journal of Control, 55(1), 153-191. doi:10.1080/00207179208934231Mizumoto, I., Ikejiri, M., & Takagi, T. (2015). Stable Adaptive Predictive Control System Design via Adaptive Output Predictor for Multi-rate Sampled Systems∗∗This work was partially supported by KAKENHI, the Grant-in-Aid for Scientific Research (C) 25420444, from the Japan Society for the Promotion of Science (JSPS). IFAC-PapersOnLine, 48(8), 1039-1044. doi:10.1016/j.ifacol.2015.09.105Carpiuc, S., & Lazar, C. (2016). Real-Time Multi-Rate Predictive Cascade Speed Control of Synchronous Machines in Automotive Electrical Traction Drives. IEEE Transactions on Industrial Electronics, 1-1. doi:10.1109/tie.2016.2561881Roshany-Yamchi, S., Cychowski, M., Negenborn, R. R., De Schutter, B., Delaney, K., & Connell, J. (2013). Kalman Filter-Based Distributed Predictive Control of Large-Scale Multi-Rate Systems: Application to Power Networks. IEEE Transactions on Control Systems Technology, 21(1), 27-39. doi:10.1109/tcst.2011.2172444Donkers, M. C. F., Tabuada, P., & Heemels, W. P. M. H. (2012). Minimum attention control for linear systems. Discrete Event Dynamic Systems, 24(2), 199-218. doi:10.1007/s10626-012-0155-xQuevedo, D. E., Ma, W.-J., & Gupta, V. (2015). Anytime Control Using Input Sequences With Markovian Processor Availability. IEEE Transactions on Automatic Control, 60(2), 515-521. doi:10.1109/tac.2014.2335311Aranda Escolastico, E., Guinaldo, M., Cuenca, A., Salt, J., & Dormido, S. (2017). Anytime Optimal Control Strategy for Multi-Rate Systems. IEEE Access, 5, 2790-2797. doi:10.1109/access.2017.2671906Guinaldo, M., Sánchez, J., & Dormido, S. (2017). Control en red basado en eventos: de lo centralizado a lo distribuido. Revista Iberoamericana de Automática e Informática Industrial RIAI, 14(1), 16-30. doi:10.1016/j.riai.2016.09.007Van Loan, C. (1977). The Sensitivity of the Matrix Exponential. SIAM Journal on Numerical Analysis, 14(6), 971-981. doi:10.1137/0714065Hazan, E. (2016). Introduction to Online Convex Optimization. Foundations and Trends® in Optimization, 2(3-4), 157-325. doi:10.1561/2400000013Sala, A., Cuenca, Á., & Salt, J. (2009). A retunable PID multi-rate controller for a networked control system. Information Sciences, 179(14), 2390-2402. doi:10.1016/j.ins.2009.02.017Chacon, J., Saenz, J., Torre, L., Diaz, J., & Esquembre, F. (2017). Design of a Low-Cost Air Levitation System for Teaching Control Engineering. Sensors, 17(10), 2321. doi:10.3390/s1710232

    Genomic mutation profile in progressive chronic lymphocytic leukemia patients prior to first-line chemoimmunotherapy with FCR and rituximab maintenance (REM)

    Get PDF
    Chronic Lymphocytic Leukemia (CLL) is the most prevalent leukemia in Western countries and is notable for its variable clinical course. This variability is partly reflected by the mutational status of IGHV genes. Many CLL samples have been studied in recent years by next-generation sequencing. These studies have identified recurrent somatic mutations in NOTCH1, SF3B1, ATM, TP53, BIRC3 and others genes that play roles in cell cycle, DNA repair, RNA metabolism and splicing. In this study, we have taken a deep-targeted massive sequencing approach to analyze the impact of mutations in the most frequently mutated genes in patients with CLL enrolled in the REM (rituximab en mantenimiento) clinical trial. The mutational status of our patients with CLL, except for the TP53 gene, does not seem to affect the good results obtained with maintenance therapy with rituximab after front-line FCR treatment

    High prognostic value of measurable residual disease detection by flow cytometry in chronic lymphocytic leukemia patients treated with front-line fludarabine, cyclophosphamide, and rituximab, followed by three years of rituximab maintenance

    Get PDF
    It has been postulated that monitoring measurable residual disease (MRD) could be used as a surrogate marker of progression-free survival (PFS) in chronic lymphocytic leukemia (CLL) patients after treatment with immunochemotherapy regimens. In this study, we analyzed the outcome of 84 patients at 3 years of follow-up after first-line treatment with fludarabine, cyclophosphamide and rituximab (FCR) induction followed by 36 months of rituximab maintenance thearpy. MRD was assessed by a quantitative four-color flow cytometry panel with a sensitivity level of 10-4. Eighty out of 84 evaluable patients (95.2%) achieved at least a partial response or better at the end of induction. After clinical evaluation, 74 patients went into rituximab maintenance and the primary endpoint was assessed in the final analysis at 3 years of follow-up. Bone marrow (BM) MRD analysis was performed after the last planned induction course and every 6 months in cases with detectable residual disease during the 36 months of maintenance therapy. Thirty-seven patients (44%) did not have detectable residual disease in the BM prior to maintenance therapy. Interestingly, 29 patients with detectable residual disease in the BM after induction no longer had detectable disease in the BM following maintenance therapy. After a median followup of 6.30 years, the median overall survival (OS) and PFS had not been reached in patients with either undetectable or detectable residual disease in the BM, who had achieved a complete response at the time of starting maintenance therapy. Interestingly, univariate analysis showed that after rituximab maintenance OS was not affected by IGHV status (mutated vs. unmutated OS: 85.7% alive at 7.2 years vs. 79.6% alive at 7.3 years, respectively). As per protocol, 15 patients (17.8%), who achieved a complete response and undetectable peripheral blood and BM residual disease after four courses of induction, were allowed to stop fludarabine and cyclophosphamide and complete two additional courses of rituximab and continue with maintenance therapy for 18 cycles. Surprisingly, the outcome in this population was similar to that observed in patients who received the full six cycles of the induction regimen. These data show that, compared to historic controls, patients treated with FCR followed by rituximab maintenance have high-quality responses with fewer relapses and improved OS. The tolerability of this regime is favorable. Furthermore, attaining an early undetectable residual disease status could shorten the duration of chemoimmunotherapy, reducing toxicities and preventing long-term side effects. The analysis of BM MRD after fludarabine-based induction could be a powerful predictor of post-maintenance outcomes in patients with CLL undergoing rituximab maintenance and could be a valuable tool to identify patients at high risk of relapse, influencing further treatment strategies

    Genotype data for 38 INDELs of 143 unrelated adults from the SouthEast Spanish population

    No full text
    Data from the paper:Population genetic data of 38 insertion-deletion markers in South East Spanish population. M Saiz, MJ Alvarez-Cubero, LJ Martinez-Gonzalez, JC Alvarez, JA Lorente.Forensic Science International: Genetics (2014), 13; 236-

    Genotype data for 38 INDELs of 143 unrelated adults from the SouthEast Spanish population

    No full text
    Data from the paper:Population genetic data of 38 insertion-deletion markers in South East Spanish population. M Saiz, MJ Alvarez-Cubero, LJ Martinez-Gonzalez, JC Alvarez, JA Lorente.Forensic Science International: Genetics (2014), 13; 236-8THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV

    Identification of process transfer function parameters in event-based PI control loops

    No full text
    This paper presents a method to estimate the parameters of first and second order systems with time delays with different accuracy levels for autotuning of event-based PI control loops. In particular, the event-based sampling condition applied in this work is based on the sampling strategy known as symmetric-send-on-delta (SSOD). The method is based on forcing the system to enter into a limit cycle and on using the information achieved from the oscillation to estimate the transfer function parameters. By manipulating the PI controller, the system can reach different limit cycles as a consequence of the intersections of the Nyquist map of the process with the describing function reciprocal of the event-based sampler. The frequency and amplitude of the limit cycle selected to apply the method define the quality of the estimations, avoiding the inaccuracy that relay identification methods based on describing function produce. Simulation results demonstrate that the estimations can be as accurate as those obtained with relay identification methods for time-driven control systems based on other approaches (state-space, curve fitting, Laplace transform, etc.)

    Enhanced Event-Based Identification Procedure for Process Control

    No full text
    An enhanced event-based identification procedure for process control has been developed based on the information obtained from the oscillations that an event-based sampler introduces in the feedback loop. The describing function analysis is used to explain the basis of the method because the event-based sampler behaves as a static nonlinearity. Features of the method are (a) the event-based procedure does not require a priori process information, (b) noniterative algorithms are sufficient to derive the process parameters, (c) only one test is needed, and (d) it allows identifying the process at a user-specified phase angle in the third quadrant. The method is presented for estimation of most common transfer functions found in chemical and process industry: first and second order, as well as integrating processes with non-minimum-phase dynamics. Furthermore, the procedure can be extended to estimate models of any structure with five or more parameters

    Design of periodic event-triggered control for polynomial systems: a delay system approach

    No full text
    Event-triggered control is a control strategy which allows the savings of communication resources in networked control systems. In this paper, we are interested in periodic event-triggering mechanisms in the sense that the triggering condition is only verified at predefined periodic sampling instants, which automatically ensures that Zeno behavior does not occur. We consider the case where both the output measurement and the control input are transmitted asynchronously using two independent triggering conditions. The developed result is dedicated to a class of nonlinear systems, where both the plant model and the feedback law can be described by polynomial functions. The overall problem is modeled and analyzed in the framework of time-delay systems, which allows to derive sum-of-squares (SOS) conditions to guarantee the global asymptotic stability in terms of the sampling period and the parameters of the triggering conditions. The approach is illustrated on a nonlinear numerical example

    Validity of continuous tuning rules in event-based PI controllers using symmetric send-on-delta sampling: An experimental approach

    No full text
    One of the difficulties encountered in the tuning of event-based proportional-integral (PI) controllers using symmetric send-on-delta sampling (SSOD) is the possible appearance of a stable limit cycle, especially when tuning rules designed for continuous control loops are applied. This oscillation is a consequence of the intersection in the Nyquist map of the open loop transfer function (process + controller) with the negative reciprocal of the describing function (DF) of the SSOD sampler. As the DF-based approach is an approximated method and therefore it introduces errors in the locations of the intersections in the Nyquist map, a set of oscillation-free PI controller parameters regions generated by an experimental approach are presented in this paper. The relevant aspect of these regions is that any parameters’ couple located inside them implies a controller that can be applied for the control of first order or integrating processes without generating stable limit cycles. As these regions constitute a resource to check whether a continuous tuning rule can be safely applied in an event-based control loop, a study of the validity of some PI tuning rules is provided in the paper. Also, the regions provide a framework for the design of tuning rules specifically formulated for event-based PI controllers and an example of that is presented in the paper. Finally, it is analyzed whether the classical sensitivity functions can be used as a tool to check and design tuning rules for SSOD-PI controllers instead of the experimental regions
    corecore